Средства криптографической защиты информации: виды и применение. Что такое скзи, и какие они бывают Средства криптографической защиты конфиденциальной информации

Механизмами шифрования данных для обеспечения информационной безопасности общества является криптографическая защита информации посредством криптографического шифрования.

Криптографические методы защиты информации применяются для обработки, хранения и передачи информации на носителях и по сетям связи.

Криптографическая защита информации при передаче данных на большие расстояния является единственно надежным способом шифрования.

Криптография - это наука, которая изучает и описывает модель информационной безопасности данных. Криптография открывает решения многих проблем информационной безопасности сети: аутентификация, конфиденциальность, целостность и контроль взаимодействующих участников.

Термин "Шифрование" означает преобразование данных в форму, не читабельную для человека и программных комплексов без ключа шифрования-расшифровки. Криптографические методы защиты информации дают средства информационной безопасности, поэтому она является частью концепции информационной безопасности.

Цели защиты информации в итоге сводятся к обеспечению конфиденциальности информации и защите информации в компьютерных системах в процессе передачи информации по сети между пользователями системы.

Защита конфиденциальной информации, основанная на криптографической защите информации, шифрует данные при помощи семейства обратимых преобразований, каждое из которых описывается параметром, именуемым "ключом" и порядком, определяющим очередность применения каждого преобразования.

Важнейшим компонентом криптографического метода защиты информации является ключ, который отвечает за выбор преобразования и порядок его выполнения. Ключ - это некоторая последовательность символов, настраивающая шифрующий и дешифрующий алгоритм системы криптографической защиты информации. Каждое такое преобразование однозначно определяется ключом, который определяет криптографический алгоритм, обеспечивающий защиту информации и информационную безопасность информационной системы.

Один и тот же алгоритм криптографической защиты информации может работать в разных режимах, каждый из которых обладает определенными преимуществами и недостатками, влияющими на надежность информационной безопасности России и средства информационной безопасности.

Симметричная или секретная методология криптографии.

В этой методологии технические средства защиты информации, шифрования и расшифровки получателем и отправителем используется один и тот же ключ, оговоренный ранее еще перед использованием криптографической инженерной защиты информации.

В случае, когда ключ не был скомпрометирован, в процессе расшифровке будет автоматически выполнена аутентификация автора сообщения, так как только он имеет ключ к расшифровке сообщения.

Таким образом, программы для защиты информации криптографией предполагают, что отправитель и адресат сообщения - единственные лица, которые могут знать ключ, и компрометация его будет затрагивать взаимодействие только этих двух пользователей информационной системы.

Проблемой организационной защиты информации в этом случае будет актуальна для любой криптосистемы, которая пытается добиться цели защиты информации или защиты информации в Интернете, ведь симметричные ключи необходимо распространять между пользователями безопасно, то есть, необходимо, чтобы защита информации в компьютерных сетях, где передаются ключи, была на высоком уровне.

Любой симметричный алгоритм шифрования криптосистемы программно аппаратного средства защиты информации использует короткие ключи и производит шифрование очень быстро, не смотря на большие объемы данных, что удовлетворяет цели защиты информации.

Средства защиты компьютерной информации на основе криптосистемы должны использовать симметричные системы работы с ключами в следующем порядке:

· Работа информационной безопасности начинается с того, что сначала защита информации создает, распространяет и сохраняет симметричный ключ организационной защиты информации;

· Далее специалист по защите информации или отправитель системы защиты информации в компьютерных сетях создает электронную подпись с помощью хэш-функции текста и добавления полученной строки хэша к тексту, который должен быть безопасно передан в организации защиты информации;

· Согласно доктрине информационной безопасности, отправитель пользуется быстрым симметричным алгоритмом шифрования в криптографическом средстве защиты информации вместе с симметричным ключом к пакету сообщения и электронной подписью, которая производит аутентификацию пользователя системы шифрования криптографического средства защиты информации;

· Зашифрованное сообщение можно смело передавать даже по незащищенным каналам связи, хотя лучше все-таки это делать в рамках работы информационной безопасности. А вот симметричный ключ в обязательном порядке должен быть передан (согласно доктрине информационной безопасности) по каналам связи в рамках программно аппаратных средств защиты информации;

· В системе информационной безопасности на протяжении истории защиты информации, согласно доктрине информационной безопасности, получатель использует тоже симметричный алгоритм для расшифровки пакета и тот же симметричный ключ, который дает возможность восстановить текст исходного сообщения и расшифровать электронную подпись отправителя в системе защиты информации;

· В системе защиты информации получатель должен теперь отделить электронную подпись от текста сообщения;

· Теперь, полученные ранее и ныне электронные подписи получатель сравнивает, чтобы проверить целостность сообщения и отсутствия в нем искаженных данных, что в сфере информационной безопасности называется целостностью передачи данных.

Открытая асимметричная методология защиты информации.

Зная историю защиты информации, можно понять, что в данной методологии ключи шифрования и расшифровки разные, хотя они создаются вместе. В такой системе защиты информации один ключ распространяется публично, а другой передается тайно, потому что однажды зашифрованные данные одним ключом, могут быть расшифрованы только другим.

Все асимметричные криптографические средства защиты информации являются целевым объектом атак взломщиком, действующим в сфере информационной безопасности путем прямого перебора ключей. Поэтому в такой информационной безопасности личности или информационно психологической безопасности используются длинные ключи, чтобы сделать процесс перебора ключей настолько длительным процессом, что взлом системы информационной безопасности потеряет какой-либо смысл.

Совершенно не секрет даже для того, кто делает курсовую защиту информации, что для того чтобы избежать медлительности алгоритмов асимметричного шифрования создается временный симметричный ключ для каждого сообщения, а затем только он один шифруется асимметричными алгоритмами.

Системы информационно психологической безопасности и информационной безопасности личности используют следующий порядок пользования асимметричными ключами:

· В сфере информационной безопасности создаются и открыто распространяются асимметричные открытые ключи. В системе информационной безопасности личности секретный асимметричный ключ отправляется его владельцу, а открытый асимметричный ключ хранится в БД и администрируется центром выдачи сертификатов системы работы защиты информации, что контролирует специалист по защите информации. Затем, информационная безопасность, скачать бесплатно которую невозможно нигде, подразумевает, что оба пользователя должны верить, что в такой системе информационной безопасности производится безопасное создание, администрирование и распределение ключей, которыми пользуется вся организация защиты информации. Даже более того, если на каждом этапе работы защиты информации, согласно основам защиты информации, каждый шаг выполняется разными лицами, то получатель секретного сообщения должен верить, что создатель ключей уничтожил их копию и больше никому данные ключи не предоставил для того, чтобы кто-либо еще мог скачать защиту информации, передаваемой в системе средств защиты информации. Так действует любой специалист по защите информации.

· Далее основы защиты информации предусматривают, что создается электронная подпись текста, и полученное значение шифруется асимметричным алгоритмом. Затем все те же основы защиты информации предполагают, секретный ключ отправителя хранится в строке символов и она добавляется к тексту, который будет передаваться в системе защиты информации и информационной безопасности, потому что электронную подпись в защиту информации и информационной безопасности может создать электронную подпись!

· Затем системы и средства защиты информации решают проблему передачи сеансового ключа получателю.

· Далее в системе средств защиты информации отправитель должен получить асимметричный открытый ключ центра выдачи сертификатов организации и технологии защиты информации. В данной организации и технологии защиты информации перехват нешифрованных запросов на получение открытого ключа - наиболее распространенная атака взломщиков. Именно поэтому в организации и технологии защиты информации может быть реализована система подтверждающих подлинность открытого ключа сертификатов.

Таким образом, алгоритмы шифрования предполагают использование ключей, что позволяет на 100% защитить данные от тех пользователей, которым ключ неизвестен.

Защита информации в локальных сетях и технологии защиты информации наряду с конфиденциальностью обязаны обеспечивать и целостность хранения информации. То есть, защита информации в локальных сетях должна передавать данные таким образом, чтобы данные сохраняли неизменность в процессе передачи и хранения.

Для того чтобы информационная безопасность информации обеспечивала целостность хранения и передачи данных необходима разработка инструментов, обнаруживающих любые искажения исходных данных, для чего к исходной информации придается избыточность.

Информационная безопасность в России с криптографией решает вопрос целостности путем добавления некой контрольной суммы или проверочной комбинации для вычисления целостности данных. Таким образом, снова модель информационной безопасности является криптографической - зависящей от ключа. По оценке информационной безопасности, основанной на криптографии, зависимость возможности прочтения данных от секретного ключа является наиболее надежным инструментом и даже используется в системах информационной безопасности государства.

Как правило, аудит информационной безопасности предприятия, например, информационной безопасности банков, обращает особое внимание на вероятность успешно навязывать искаженную информацию, а криптографическая защита информации позволяет свести эту вероятность к ничтожно малому уровню. Подобная служба информационной безопасности данную вероятность называет мерой имитостойкости шифра, или способностью зашифрованных данных противостоять атаке взломщика.

Защита информации от вирусов или системы защиты экономической информации в обязательном порядке должны поддерживать установление подлинности пользователя для того, чтобы идентифицировать регламентированного пользователя системы и не допустить проникновения в систему злоумышленника.

Проверка и подтверждение подлинности пользовательских данных во всех сферах информационного взаимодействия - важная составная проблема обеспечения достоверности любой получаемой информации и системы защиты информации на предприятии.

Информационная безопасность банков особенно остро относится к проблеме недоверия взаимодействующих друг с другом сторон, где в понятие информационной безопасности ИС включается не только внешняя угроза с третьей стороны, но и угроза информационной безопасности (лекции) со стороны пользователей.

Цифровая подпись

информационный безопасность защита несанкционированный

Иногда пользователи ИС хотят отказаться от ранее принятых обязательств и пытаются изменить ранее созданные данные или документы. Доктрина информационной безопасности РФ учитывает это и пресекает подобные попытки.

Защита конфиденциальной информации с использованием единого ключа невозможно в ситуации, когда один пользователь не доверяет другому, ведь отправитель может потом отказаться от того, что сообщение вообще передавалось. Далее, не смотря на защиту конфиденциальной информации, второй пользователь может модифицировать данные и приписать авторство другому пользователю системы. Естественно, что, какой бы не была программная защита информации или инженерная защита информации, истина установлена быть не может в данном споре.

Цифровая подпись в такой системе защиты информации в компьютерных системах является панацеей проблемы авторства. Защита информации в компьютерных системах с цифровой подписью содержит в себе 2 алгоритма: для вычисления подписи и для ее проверки. Первый алгоритм может быть выполнен лишь автором, а второй - находится в общем доступе для того, чтобы каждый мог в любой момент проверить правильность цифровой подписи.

Термин "криптография" происходит от древнегреческих слов «скрытый» и «пишу». Словосочетание выражает основное назначение криптографии - это защита и сохранение тайны переданной информации. Защита информации может происходить различными способами. Например, путем ограничения физического доступа к данным, скрытия канала передачи, создания физических трудностей подключения к линиям связи и т. д.

Цель криптографии

В отличие от традиционных способов тайнописи, криптография предполагает полную доступность канала передачи для злоумышленников и обеспечивает конфиденциальность и подлинность информации с помощью алгоритмов шифрования, делающих информацию недоступной для постороннего прочтения. Современная система криптографической защиты информации (СКЗИ) - это программно-аппаратный компьютерный комплекс, обеспечивающий защиту информации по следующим основным параметрам.

  • Конфиденциальность - невозможность прочтения информации лицами, не имеющими соответствующих прав доступа. Главным компонентом обеспечения конфиденциальности в СКЗИ является ключ (key), представляющий собой уникальную буквенно-числовую комбинацию для доступа пользователя в определенный блок СКЗИ.
  • Целостность - невозможность несанкционированных изменений, таких как редактирование и удаление информации. Для этого к исходной информации добавляется избыточность в виде проверочной комбинации, вычисляемой по криптографическому алгоритму и зависящая от ключа. Таким образом, без знания ключа добавление или изменение информации становится невозможным.
  • Аутентификация - подтверждение подлинности информации и сторон, ее отправляющих и получающих. Передаваемая по каналам связи информация должна быть однозначно аутентифицирована по содержанию, времени создания и передачи, источнику и получателю. Следует помнить, что источником угроз может быть не только злоумышленник, но и стороны, участвующие в обмене информацией при недостаточном взаимном доверии. Для предотвращения подобных ситуации СКЗИ использует систему меток времени для невозможности повторной или обратной отсылки информации и изменения порядка ее следования.

  • Авторство - подтверждение и невозможность отказа от действий, совершенных пользователем информации. Самым распространенным способом подтверждения подлинности является Система ЭЦП состоит из двух алгоритмов: для создания подписи и для ее проверки. При интенсивной работе с ЭКЦ рекомендуется использование программных удостоверяющих центров для создания и управления подписями. Такие центры могут быть реализованы как полностью независимое от внутренней структуры средство СКЗИ. Что это означает для организации? Это означает, что все операции с обрабатываются независимыми сертифицированными организациями и подделка авторства практически невозможна.

Алгоритмы шифрования

На текущий момент среди СКЗИ преобладают открытые алгоритмы шифрования с использованием симметричных и асимметричных ключей с длиной, достаточной для обеспечения нужной криптографической сложности. Наиболее распространенные алгоритмы:

  • симметричные ключи - российский Р-28147.89, AES, DES, RC4;
  • асимметричные ключи - RSA;
  • с использованием хеш-функций - Р-34.11.94, MD4/5/6, SHA-1/2.

Многие страны имеют свои национальные стандарты В США используется модифицированный алгоритм AES с ключом длиной 128-256 бит, а в РФ алгоритм электронных подписей Р-34.10.2001 и блочный криптографический алгоритм Р-28147.89 с 256-битным ключом. Некоторые элементы национальных криптографических систем запрещены для экспорта за пределы страны, деятельность по разработке СКЗИ требует лицензирования.

Системы аппаратной криптозащиты

Аппаратные СКЗИ - это физические устройства, содержащие в себе программное обеспечение для шифрования, записи и передачи информации. Аппараты шифрации могут быть выполнены в виде персональных устройств, таких как USB-шифраторы ruToken и флеш-диски IronKey, плат расширения для персональных компьютеров, специализированных сетевых коммутаторов и маршрутизаторов, на основе которых возможно построение полностью защищенных компьютерных сетей.

Аппаратные СКЗИ быстро устанавливаются и работают с высокой скоростью. Недостатки - высокая, по сравнению с программными и программно-аппаратными СКЗИ, стоимость и ограниченные возможности модернизации.

Также к аппаратным можно отнести блоки СКЗИ, встроенные в различные устройства регистрации и передачи данных, где требуется шифрование и ограничение доступа к информации. К таким устройствам относятся автомобильные тахометры, фиксирующие параметры автотранспорта, некоторые типы медицинского оборудования и т.д. Для полноценной работы таким систем требуется отдельная активация СКЗИ модуля специалистами поставщика.

Системы программной криптозащиты

Программные СКЗИ - это специальный программный комплекс для шифрования данных на носителях информации (жесткие и флеш-диски, карты памяти, CD/DVD) и при передаче через Интернет (электронные письма, файлы во вложениях, защищенные чаты и т.д.). Программ существует достаточно много, в т. ч. бесплатных, например, DiskCryptor. К программным СКЗИ можно также отнести защищенные виртуальные сети обмена информацией, работающие «поверх Интернет»(VPN), расширение Интернет протокола HTTP с поддержкой шифрования HTTPS и SSL - криптографический протокол передачи информации, широко использующийся в системах IP-телефонии и интернет-приложениях.

Программные СКЗИ в основном используются в сети Интернет, на домашних компьютерах и в других сферах, где требования к функциональности и стойкости системы не очень высоки. Или как в случае с Интернетом, когда приходится одновременно создавать множество разнообразных защищенных соединений.

Программно-аппаратная криптозащита

Сочетает в себе лучшие качества аппаратных и программных систем СКЗИ. Это самый надежный и функциональный способ создания защищенных систем и сетей передачи данных. Поддерживаются все варианты идентификации пользователей, как аппаратные (USB-накопитель или смарт-карта), так и «традиционные» - логин и пароль. Программно-аппаратные СКЗИ поддерживают все современные алгоритмы шифрования, обладают большим набором функций по созданию защищенного документооборота на основе ЭЦП, всеми требуемыми государственными сертификатами. Установка СКЗИ производится квалифицированным персоналом разработчика.

Компания «КРИПТО-ПРО»

Один из лидеров российского криптографического рынка. Компания разрабатывает весь спектр программ по защите информации с использованием ЭЦП на основе международных и российских криптографических алгоритмов.

Программы компании используются в электронном документообороте коммерческих и государственных организаций, для сдачи бухгалтерской и налоговой отчетности, в различных городских и бюджетных программах и т. д. Компанией выдано более 3 млн. лицензий для программы КриптоПРО CSP и 700 лицензий для удостоверяющих центров. «Крипто-ПРО» предоставляет разработчикам интерфейсы для встраивания элементов криптографической защиты в свои и оказывает весь спектр консалтинговых услуг по созданию СКЗИ.

Криптопровайдер КриптоПро

При разработке СКЗИ КриптоПро CSP использовалась встроенная в операционную систему Windows криптографическая архитектура Cryptographic Service Providers. Архитектура позволяет подключать дополнительные независимые модули, реализующие требуемые алгоритмы шифрования. С помощью модулей, работающих через функции CryptoAPI, криптографическую защиту могут осуществлять как программные, так и аппаратные СКЗИ.

Носители ключей

В качестве личных ключей могут использоваться различные такие как:

  • смарт-карты и считыватели;
  • электронные замки и считыватели, работающие с устройствами Touch Memory;
  • различные USB-ключи и сменные USB-накопители;
  • файлы системного реестра Windows, Solaris, Linux.

Функции криптопровайдера

СКЗИ КриптоПро CSP полностью сертифицирована ФАПСИ и может использоваться для:

2. Полной конфиденциальности, аутентичности и целостности данных с помощью шифрования и имитационной защиты согласно российским стандартам шифрования и протокола TLS.

3. Проверки и контроля целостности программного кода для предотвращения несанкционированного изменения и доступа.

4. Создания регламента защиты системы.

К средствам криптографической защиты информации (СКЗИ), относятся аппаратные, программно-аппаратные и программные средства, реализующие криптографические алгоритмы преобразования информации.

Предполагается, что СКЗИ используются в некоторой компьютерной системе (в ряде источников - информационно-телекоммуникационной системе или сети связи), совместно с механизмами реализации и гарантирования некоторой политики безопасности.

Наряду с термином "средство криптографической защиты информации" часто используется термин шифратор - аппарат или программа, реализующая алгоритм шифрования. Введенное понятие СКЗИ включает в себя шифратор, но в целом является более широким.

Первые операционные системы (ОС) для персональных компьютеров (MS-DOS и Windows версий до 3.1 включительно) вовсе не имели собственных средств защиты, что и породило проблему создания дополнительных средств защиты. Актуальность этой проблемы практически не уменьшилась с появлением более мощных ОС с развитыми подсистемами защиты. Это обусловлено тем, что большинство систем не способны защитить данные, находящиеся за ее пределами, например, при использовании сетевого информационного обмена.

Средства криптографической защиты информации, обеспечивающие повышенный уровень защиты можно разбить на пять основных групп (рис. 2.1).

Рис. 2.1 Основные группы СКЗИ

Первую группу образуют системы идентификации и аутентификации пользователей . Такие системы применяются для ограничения доступа случайных и незаконных пользователей к ресурсам компьютерной системы. Общий алгоритм работы этих систем заключается в том, чтобы получить от пользователя информацию, удостоверяющую его личность, проверить ее подлинность и затем предоставить (или не предоставить) этому пользователю возможность работы с системой.

Вторую группу средств, обеспечивающих повышенный уровень защиты, составляют системы шифрования дисковых данных . Основная задача, решаемая такими системами, состоит в защите от несанкционированного использования данных, расположенных на дисковых носителях.

Обеспечение конфиденциальности данных, располагаемых на дисковых носителях, обычно осуществляется путем их шифрования с использованием симметричных алгоритмов шифрования. Основным классификационным признаком для комплексов шифрования служит уровень их встраивания в компьютерную систему.

Системы шифрования данных могут осуществлять криптографические преобразования данных:

9. на уровне файлов (защищаются отдельные файлы);

10. на уровне дисков (защищаются диски целиком).

К программам первого типа можно отнести архиваторы типа WinRAR , которые позволяют использовать криптографические методы для защиты архивных файлов. Примером систем второго типа может служить программа шифрования Diskreet, входящая в состав популярного программного пакета Norton Utilities.

Другим классификационным признаком систем шифрования дисковых данных является способ их функционирования.

По способу функционирования системы шифрования дисковых данных делят на два класса:

4) системы “прозрачного” шифрования;

5) системы, специально вызываемые для осуществления шифрования.

В системах прозрачного шифрования (шифрования “на лету”) криптографические преобразования осуществляются в режиме реального времени, незаметно для пользователя. Ярким примером является шифрование папки Temp и Мои документы при использовании EFS Win2000 – при работе шифруются не только сами документы, но и создаваемые временные файлы, притом пользователь не замечает этого процесса.

Системы второго класса обычно представляют собой утилиты, которые необходимо специально вызывать для выполнения шифрования. К ним относятся, например, архиваторы со встроенными средствами парольной защиты.

К третьей группе средств, обеспечивающих повышенный уровень защиты, относятся системы шифрования данных, передаваемых по компьютерным сетям . Различают два основных способа шифрования:

· канальное шифрование;

· оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся передаваемая по каналу связи информация, включая служебную. Соответствующие процедуры шифрования реализуются с помощью протокола канального уровня семиуровневой эталонной модели взаимодействия открытых систем OSI (Open System Interconnection).

Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы.

Однако, у данного подхода имеются существенные недостатки, в частности, шифрование служебной информации, неизбежное на данном уровне, может привести к появлению статистических закономерностей в шифрованных данных; это влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Оконечное (абонентское) шифрование позволяет обеспечить конфиденциальность данных, передаваемых между двумя прикладными объектами (абонентами). Оконечное шифрование реализуется с помощью протокола прикладного или представительного уровня эталонной модели OSI. В этом случае защищенным оказывается только содержание сообщения, вся служебная информация остается открытой. Данный способ позволяет избежать проблем, связанных с шифрованием служебной информации, но при этом возникают другие проблемы. В частности, злоумышленник, имеющий доступ к каналам связи компьютерной сети, получает возможность анализировать информацию о структуре обмена сообщениями, например, об отправителе и получателе, о времени и условиях передачи данных, а также об объеме передаваемых данных.

Четвертую группу средств защиты составляют системы аутентификации электронных данных .

При обмене электронными данными по сетям связи возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе.

Для аутентификации электронных данных применяют код аутентификации сообщения (имитовставку) или электронную цифровую подпись. При формировании кода аутентификации сообщения и электронной цифровой подписи используются разные типы систем шифрования.

Пятую группу средств, обеспечивающих повышенный уровень защиты, образуют средства управления ключевой информацией . Под ключевой информацией понимается совокупность всех используемых в компьютерной системе или сети криптографических ключей.

Как известно, безопасность любого криптографического алгоритма определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в компьютерной системе или сети.

Основным классификационным признаком средств управления ключевой информацией является вид функции управления ключами. Различают следующие основные виды функций управления ключами: генерация ключей, хранение ключей и распределение ключей.

Способы генерации ключей различаются для симметричных и асимметричных криптосистем. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел. Генерация ключей для асимметричных криптосистем представляет существенно более сложную задачу в связи с необходимостью получения ключей с определенными математическими свойствами.

Функция хранения ключей предполагает организацию безопасного хранения, учета и удаления ключей. Для обеспечения безопасного хранения и передачи ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей . В иерархию ключей обычно входят главный ключ (мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключей являются критическими вопросами криптографической защиты.

Распределение ключей является самым ответственным процессом в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также оперативность и точность их распределения. Различают два основных способа распределения ключей между пользователями компьютерной сети:

· применение одного или нескольких центров распределения ключей;

· прямой обмен сеансовыми ключами между пользователями.

Перейдем к формулированию требований к СКЗИ, общим для всех рассмотренных классов.

В этой статье вы узнаете, что такое СКЗИ и для чего это нужно. Это определение относится к криптографии - защите и хранению данных. Защиту информации в электронном виде можно сделать любым способом - даже путем отключения компьютера от сети и установки возле него вооруженной охраны с собаками. Но намного проще это осуществить, используя средства криптозащиты. Давайте разберемся, что это и как реализуется на практике.

Основные цели криптографии

Расшифровка СКЗИ звучит как «система криптографической защиты информации». В криптографии канал передачи информации может быть полностью доступен злоумышленникам. Но все данные конфиденциальны и очень хорошо зашифрованы. Поэтому, невзирая на открытость каналов, информацию злоумышленники получить не могут.

Современные средства СКЗИ состоят из программно-компьютерного комплекса. С его помощью обеспечивается защита информации по самым важным параметрам, которые мы и рассмотрим далее.

Конфиденциальность

Прочесть информацию невозможно, если нет на это прав доступа. А что такое СКЗИ и как он шифрует данные? Главный компонент системы - это электронный ключ. Он представляет собой комбинацию из букв и чисел. Только при вводе этого ключа можно попасть в нужный раздел, на котором установлена защита.

Целостность и аутентификация

Это важный параметр, который определяет возможность несанкционированного изменения данных. Если нет ключа, то редактировать или удалить информацию нельзя.

Аутентификация - это процедура проверки подлинности информации, которая записана на ключевом носителе. Ключ должен соответствовать той машине, на которой производится расшифровка информации.

Авторство

Это подтверждение действий пользователя и невозможность отказа от них. Самый распространенный тип подтверждения - это ЭЦП (электронная цифровая подпись). Она содержит в себе два алгоритма - один создает подпись, второй ее проверяет.

Обратите внимание на то, что все операции, которые производятся с электронными подписями, проходят обработку сертифицированными центрами (независимыми). По этой причине подделать авторство невозможно.

Основные алгоритмы шифрования данных

На сегодняшний день распространено немало сертификатов СКЗИ, ключи при шифровании используются различные - как симметричные, так и ассиметричные. И длина ключей достаточна для того, чтобы обеспечить необходимую криптографическую сложность.

Самые популярные алгоритмы, которые используются в криптозащите:

  1. Симметричный ключ - DES, AES, RC4, российский Р-28147.89.
  2. С хеш-функциями - например, SHA-1/2, MD4/5/6, Р-34.11.94.
  3. Асимметричный ключ - RSA.

Во многих странах имеются свои стандарты для шифровальных алгоритмов. Например, в Соединенных Штатах применяют модифицированное AES-шифрование, ключ может быть длиной от 128 до 256 бит.

В Российской Федерации существует свой алгоритм - Р-34.10.2001 и Р-28147.89, в котором применяется ключ размером 256 бит. Обратите внимание на то, что существуют элементы в национальных криптографических системах, которые запрещено экспортировать в другие страны. Вся деятельность, связанная с разработкой СКЗИ, нуждается в обязательном лицензировании.

Аппаратная криптозащита

При установке тахографов СКЗИ можно обеспечить максимальную защиту информации, которая хранится в приборе. Все это реализуется как на программном, так и на аппаратном уровнях.

Аппаратный тип СКЗИ - это устройства, которые содержат специальные программы, обеспечивающие надежное шифрование данных. Также с их помощью происходит хранение информации, ее запись и передача.

Аппарат шифрации выполняется в виде шифратора, подключаемого к портам USB. Существуют также аппараты, которые устанавливаются на материнские платы ПК. Даже специализированные коммутаторы и сетевые карты с криптозащитой можно использовать для работы с данными.

Аппаратные типы СКЗИ устанавливаются довольно быстро и способны с большой скоростью обмениваться информацией. Но недостаток - это достаточно высокая стоимость, а также ограниченная возможность модернизации.

Программная криптозащита

Это комплекс программ, позволяющий осуществлять шифрование информации, которая хранится на различных носителях (флешках, жестких и оптических дисках, и т. д.). Также, если имеется лицензия на СКЗИ такого типа, можно производить шифрование данных при передаче их по сети Интернет (например, посредством электронной почты или чата).

Программ для защиты большое количество, причем существуют даже бесплатные - к таким можно отнести DiskCryptor. Программный тип СКЗИ - это еще и виртуальные сети, позволяющие осуществлять обмен информацией «поверх Интернет». Это известные многим VPN-сети. К такому типу защиты можно отнести и протокол HTTP, поддерживающий шифрование SSL и HTTPS.

Программные средства СКЗИ по большей части используются при работе в Интернете, а также на домашних ПК. Другими словами, исключительно в тех областях, где нет серьезных требований к стойкости и функциональности системы.

Программно-аппаратный тип криптозащиты

Теперь вы знаете, что такое СКЗИ, как работает и где используется. Нужно еще выделить один тип - программно-аппаратный, в котором собраны все самые лучшие свойства обоих видов систем. Такой способ обработки информации на сегодняшний день является самым надежным и защищенным. Причем идентифицировать пользователя можно различными способами - как аппаратными (путем установки флеш-носителя или дискеты), так и стандартным (путем введения пары логин/пароль).

Программно-аппаратными системами поддерживаются все алгоритмы шифрования, которые существуют на сегодняшний день. Обратите внимание на то, что установку СКЗИ должен производить только квалифицированный персонал разработчика комплекса. Понятно, что такое СКЗИ не должно устанавливаться на компьютеры, на которых не осуществляется обработка конфиденциальной информации.

Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

  • Групповая электронная подпись.
  • Одноразовая цифровая подпись.
  • Доверенная ЭП.
  • Квалифицированная и неквалифицированная подпись и пр.
Статьи по теме: